混成式共模電感的原理及功能講解?共模電感廠家今天就給各位大家們解開這個謎團!
EMI抑制方案有許多組合,包括濾波器組合、變壓器繞線安排,甚至PCB布局。本文提供一種結合共模電感與差模電感的磁混成,稱之為混成式共模電感器。不僅保留共模電感的高阻抗特性,同時利用其很高漏電感當成差模電感用。不僅可以縮小體積節省濾波器成本,更提供了工程師快速解決傳導型EMI 問題的方法。
一、混成式共模電感的原理與功能:
在常規單級EMI 濾波器電路中,如圖一,有共模噪聲濾波器 (LCM、CY1與CY2) 與差模噪聲濾波器 (LDM、CX1與CX2) 分別形成”LC濾波器”衰減共模與差模噪聲。共模電感通常以高導磁錳鋅 (Mn-Zn) 鐵氧體 (Ferrite) 制成,電感值可達1~50mH。共模電感器,如圖二,由于繞線極性安排,雖然兩組線圈分別流過負載電流,但鐵芯內部磁力線互相抵消,一般不存在鐵芯飽和的問題。常用的鐵芯有環型 (Toroidal)、UU型 (UU-9.8、UU-10.5等)、ET型與UT型,如圖三。為了獲得足夠的共模電感值,要盡量讓兩組線圈的耦合達到最好,所以多采用施工成本較高的環型或一體成型電感的ET與UT 鐵芯。
二、共模濾波器(a)環型(b)ET型(c)UU型(d)UT型:
從共模電感的工作原理與等效電路來看,雙繞組的共模電感雖然有很好的耦合,但是還是存在漏電感,漏電感就是由漏磁通造成。這個漏電感在等效上串聯在電路上,功能上與差模電感無異。所以可以說,共模電感器的漏電感可以利用來做為差模濾波器。然而如圖三所示的共模電感器,由于機械結構的關系,其漏電感都很小,約莫在數mH到100mH。如果要得到更大的漏電感,只有增加匝數一途,如此一來,線徑變細,電流耐受降低。要改善只有增加鐵芯尺寸,當然也增加了濾波器的體積與成本。許多要求極高共模電感的應用,其實不在濾除共模噪聲,而是要得到較大的漏電感當差模濾波器用,只是許多工程師不甚清楚罷了。
三、共模電感器的等效模型:
為了增加共模電感的漏電感,特殊的鐵芯結構與繞線方法稱為混成式共模電感器 (Integrated Common-mode Choke) 或者稱混成共模電感器 (Hybrid Common-mode Choke),如圖五所示。這樣的結構,不僅可以保留共模電感量以充分濾除共模噪聲,而且其漏電感形成的差模電感可以高達數百mH,配合適當的X電容,可以有效的濾除中低頻段 (150kHz~3MHz) 的差模信號。實驗證明混成式共模電感器不僅具有很好的濾波特性,低成本與小體積更是最大的優點。
四、立式與臥式混成式共模電感器
1、主要的電氣參數
混成式共模電感器除保留了常規的共模電感器的規格外,還兼具差模電感的特性。一般除了用共模與差模電感量標示外,還要以以下參數來規范。
1)共模阻抗 (Common-mode Impedance, ZCM) :
相較于電源阻抗穩定網絡 (Line Impedance Stabilization Network, LISN)的高頻等效電阻 (共模為25W),濾波用的共模阻抗越大越好。除了鐵芯材質外,繞線的方法(槽數)更影響高頻阻抗的高低。共模阻抗的量測法,圖七為ASU-1200系列共模阻抗特性圖。由于繞線的層間雜散電容 (Stray Capacitance, CS) 存在,高頻時將變為電容性;CS越小越好。
(2)共模電感 (Common-mode Inductance, LCM) :
傳統上,習慣以外加測試電壓 (VOSC)與頻率來規范共模電感。依鐵芯材料特色,共模電感以VOSC = 1Vac @100kHz 量測較為穩定。
(3)差模阻抗 (Differential-mode Impedance, ZDM) :
同樣的,量測等效差模阻抗的方法,用差模阻抗特性圖 來定義差模濾波的效能;相較于LISN 的等效電阻100W,差模阻抗也是越大越好。當然高頻時一樣會變成電容性,但只要阻抗夠大,一樣有濾波的效果。